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Research context and objectives

The Global Navigation Satellite System (GNSS) is an important tool to observe
and model geodynamic processes such as post-glacial rebound, hydrological
loading or crustal deformations. GNSS signals also have important practical
geopositioning applications such as for example when used with differential
methods to improve GNSS position accuracy.

Due to the considerable computational resources required, GNSS time series analysis
is commonly performed with daily observations. Yet, in many cases, it is preferable
to analyze data hourly or even on a minute-by-minute basis.

Research Objective: Analysis of large network of GNSS stations is extremely
computationally intensive and our objective is to develop an alternative estimator that
is considerably more computationally efficient with a reasonable loss in efficiency.
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Example of a GNSS network and of a GNSS time series signal
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In many applications, the primary objective is to obtain a precise estimation of a
specific parameter, with a particular emphasis on the signal’s trend, and to
accurately assess the associated uncertainty of this parameter.
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The model

A general formulation of the models typically used to model GNSS signals can be
expressed as:

y = Xβ0 + ε

where y ∈ IRn denotes the response variable of interest (i.e. the vector of GNSS
observations), X ∈ IRn×p is a fixed design matrix, β0 ∈ IRp is a vector of unknown
constants and ε ∈ IRn is a vector (mean zero) of residuals.

We assume that εt is a strictly stationary process with ε ∼ N {0,Σ(γ0)}, where
Σ(γ0) > 0 and that it depends on the unknown parameter vector γ0 ∈ IRq. This
matrix does not have a block diagonal structure neither a Toeplitz structure.

The noise structure is generally modelled with latent composite stochastic models
which often consider long-memory stochastic processes.

Hence, we define
θ0 :=

[
βT

0 γT
0

]T ∈ Θ ∈ IRp+q

as the vector of parameters of the model.
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Maximum Likelihood Estimator (MLE)

The likelihood function for a generic θ ∈ Θ is simply given by

L (θ|y) = exp

{
−1

2
(y −Xβ)T Σ (γ)−1 (y −Xβ)

}[
(2π)n det {Σ (γ)}

]−1/2

,

allowing to define the Maximum Likelihood Estimator (MLE) for θ0 as

θ̂ =
[

β̂T γ̂T
]T

= argmax
θ∈Θ

L(θ | Y ) (1)

Using standard regularity conditions, the MLE is asymptotically normal and
asymptotically efficient.

Solving (1) require to evaluate the likelihood function a large number of time where
each evaluation involves the inversion of the n× n matrix Σ(γ0). This operation
has a computational complexity of order O(nδ) where δ ∈ [2, 3] depending on the
considered algorithm.

In practice, the analysis of complex geodynamic processes requires to estimate
signals from hundreds to thousands of GNSS stations (He et al., 2021) which record
daily observations over decades and where different noise models must be tested.

This procedure which has to be performed routinely becomes impractical due to
the large amount (e.g., weeks) of processing time required (He et al., 2019; Bos
et al., 2020).
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The GMWMX

We propose to use of a new two-step statistical procedure, which considers a
Generalized Least Squares (GLS) approach combined with the Generalized
Method of Wavelet Moments (GMWM) proposed in Guerrier et al., 2013.

The proposed estimator is an iterative method and the number of iteration j can be
used to balance the statistical properties and computational cost.

We denotes this estimator as the GMWMX in reference to the
Autoregressive–moving-average model with eXogenous inputs model
(ARMAX).

We first define the GMWMX estimator β̃ of the parameters β0 which corresponds
to the Generalized Least Square estimator.

β̃(Σ) = argmin
β

{y −Xβ}TΣ−1{y −Xβ} =
(
XTΣ−1X

)−1

XTΣ−1y

We define ε(β) = y −Xβ and its natural estimator based on β̃,
ε̃i = εi(β̃) = yi −XT

i β̃
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The GMWMX

We then consider a GMWM methodology in order to construct a computationally
efficient estimator of γ0 using the Wavelet Variance (WV) of the residuals ε(β).

The GMWM (Guerrier et al., 2013) is a computationally efficient moment-based
estimator which exploits the mapping between the theoretical Wavelet Variance
(WV) implied by a model and the empirical WV estimated on a signal.

We define ν(γ), the WV implied by the estimated model and ν̂ (β) which
corresponds to the estimated Haar WV computed on ε (β), in order to estimate the
vector of parameters of interest γ0.

We define

γ̃(β) = argmin
γ

{ν̂(β)− ν(γ)}TΩ{ν̂(β)− ν(γ)},

where Ω is an appropriate (possibly estimated) positive-definite weighting matrix.

The computational bottleneck of this procedure corresponds to the computation of
the empirical WV which has a computational complexity of order O(nlog(n)).
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GMWMX: Iterative algorithm (Flowchart)
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GMWMX: Iterative algorithm

We define the estimator resulting from j iterations and hence using an updated
estimator of Σ(γ0) as θ̃

(j).

Starting at j = 1 with Σ(0) = I, we define

β̃(j) =

[
XT

(
Σ(j−1)

)−1

X

]−1

XT
(
Σ(j−1)

)−1

y,

γ̃(j) = argmin
γ

{
ν̂
(
β̃(j)

)
− ν(γ)

}T

Ω
{
ν̂
(
β̃(j)

)
− ν(γ)

}
,

Σ(j) = Σ
(
γ̃(j)

)
= var

(
y | γ̃(j)

)
.

(2)

The resulting estimator is hence denoted by: θ̃(j) =
[

β̃(j)T γ̃(j)T
]T

We denote the estimator defined in Eq. (2) with one or two iterations as the
GMWMX-1 and the GMWMX-2, respectively.
Under arguably weak conditions (Guerrier et al., 2013; Guerrier et al., 2022), the
resulting estimator is consistent and asymptotically normal.
Moreover, it can be shown that β̃(j) is asymptotically optimal for all j ⩾ 2 in the
sense that

lim
n→∞

var
{√

an

(
β̂ − β0

)}
− var

{√
an

(
β̃(j) − β0

)}
= 0

where {an}n∈N is a diverging sequence of positive numbers such that
√

an corresponds to the asymptotic rate of convergence of β̂.
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Simulation Studies: Description & Settings

We evaluate the performance of the GMWMX-1 and GMWMX-2 estimators with
respect to the MLE implemented in the open source software Hector v1.9 (Bos
et al., 2008) which represents the fastest available implementation of the MLE for
these type of models.

We generate signal of different lengths of GNSS daily position time series, i.e., 2.5,
5, 10, 20 and 40 years and consider 10 % of missing observations for each simulated
signal which corresponds approximately to the estimated median number of missing
data of publicly available datasets (Bos et al., 2013).

We fix the parameters of the model by considering values which are representative of
the estimated parameters on real GNSS time series signal.

All our simulations are based on B = 103 Monte-Carlo replications.
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Model considered

A common formulation of of the model is given by He et al., 2017, which can we
expressed as follows for the i-th component of the vector Xβ0:

XT
i β0 = a+ b (ti − t0) +

2∑
j=1

[cj sin (2πfjti) + dj cos (2πfjti)] +

ng∑
k=1

gkH (ti − tk) ,

where:
a is the initial position at the reference epoch t0
b is the trend parameter
cj and dj are the periodic motion parameters (where fj is the frequency of the
sinusoidal and j = 1 and j = 2 represent the annual and semi-annual seasonal terms,
respectively).
The offsets term models earthquakes, equipment changes or human intervention, in
which gk is the magnitude of the change at epochs tk, ng is the total number of

offsets, and H(x) is the Heaviside step function H(x) :=

{
1, x > 0

0, x ≤ 0

Regarding the stochastic model considered for ε, we consider the sum of a White
noise and a Matérn process, where the autocovariance function of the Matérn
process with parameter α, λ and σ2 is given by:

a(h) =
2σ2

Γ(α − 1/2)2α−1/2
|λh|α−1/2Kα−1/2(λ|h|)

where Kω(x) is the modified Bessel function of the second kind of order ω.
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Simulation Studies: Computational gain
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Figure: Mean running time of the MLE, the GMWMX-1 and the GMWMX-2 as a function of the
sample size.
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Simulation Studies: Point estimation
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Figure: Boxplots of the estimated parameters of the model with the GMWMX-1, the GMWMX-2
and the MLE
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Simulation Studies: Point estimation
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Figure: Boxplots of the estimated parameters of the model with the GMWMX-1, the GMWMX-2
and the MLE
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Simulation Studies: Inference
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Figure: Empirical coverage of the confidence intervals at level 1− α = 0.95 for the parameters b,
c1 and d1 for GMWMX-1, GMWMX-2 and the MLE as a function of sample size. The grey area
represents a 95% confidence interval of the simulation error.
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Case Study

We apply our method to daily GNSS coordinate time series. We use measurements
from a small network of 33 continuously operating GNSS receivers distributed
over the east coast of the USA.

We use the daily position time series to estimate the tectonic rate and the
associated uncertainties with the GMWMX-1 and the MLE.

As each GNSS station records observations for the three coordinates (East, North,
Up) and that the mean size of each time series is approximately 10 years, ranging
from 8 to 15 years, the computing time for the GMWMX-1 for the whole GNSS
network is below 40 seconds, while in comparison, Hector’s processing time is
approximately 23 minutes.
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Case Study

GMWMX-1 MLE (Hector)
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Figure: Estimated North-East velocity solutions for 33 GNSS receivers distributed over the East
coast of the USA using the GMWMX-1 and Hector software (MLE).
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Implementation

The gmwmx R package implements the Generalized Method of Wavelet Moments with
eXogenous inputs estimator (GMWMX) and is available on CRAN and GitHub.
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Contributions & Further work

We propose a computationally efficient and scalable estimator based on simple
statistical concepts which allow to process large-scale networks which include
thousands of GNSS stations. Our estimator is implemented in an open-source
software available on CRAN.

The first estimator (GMWMX-1) is highly computationally efficient but comes at the
price of marginally deteriorated statistical properties. The second estimator
(GMWMX-2) is asymptotically efficient for the linear functional parameters but has
a slightly increased processing time.

We are currently working on developing the theory to extend the GMWMX in a
robust setting.

The GMWMX estimator is well-suited for managing very large datasets, such as
those encountered in air pollution studies (Chen and Zhou, 2020). In such cases, a
prevalent tactic involves employing a divide and conquer strategy for estimation,
as processing the complete dataset on a single server is unfeasible.
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Q & A

Thank You!

More info:

 Original article published in the Journal of Geodesy

� https://lionelvoirol.com

B Lionel.Voirol@unige.ch
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