
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Adapting to Continuously Shifting Domains

Anonymous Authors1

Abstract
Domain adaptation typically focuses on adapting
a model from a single source domain to a target
domain. However, in practice, this paradigm of
adapting from one source to one target is limit-
ing, as different aspects of the real world such
as illumination and weather conditions vary con-
tinuously and cannot be effectively captured by
two static domains. Approaches that attempt to
tackle this problem by adapting from a single
source to many different target domains simulta-
neously are consistently unable to learn across all
domain shifts. Instead, we propose an adaptation
method that exploits the continuity between grad-
ually varying domains by adapting in sequence
from the source to the most similar target domain.
By incrementally adapting while simultaneously
efficiently regularizing against prior examples, we
obtain a single strong model capable of recogni-
tion within all observed domains. Our method is
applicable on a wide variety of learning settings,
including visual classification and reinforcement
learning in a video game domain.

1. Introduction
Imagine a self-driving car with a recognition system trained
in mostly sunny weather conditions. Gradually, it starts to
rain, and the self-driving agent must adapt to this change
and continue to navigate the roads safely. We think of this
weather change as a domain shift (Gretton et al., 2009) from
a source domain, sunny weather, to a target domain, rainy
weather. This domain shift phenomenon seriously affects
the efficacy of the car’s recognition model, since it was
trained in sunny conditions and may not generalize well to
the novelty of rain.

The typical supervised learning solution to this problem is to
further fine-tune the recognition model on labeled datasets

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

time
0 1 N

Source

Target

Figure 1. We consider the problem of adapting from a fixed source
domain (denoted with red points) to a target domain which evolves
over time (denoted with blue points). Our approach uses the conti-
nuity of the target domain shift over time to produce an adaptation
method which learns to adapt to the current setting while producing
a general model that efficiently remembers all prior settings.

of the target, rainy, domain. However, these labels are
often unavailable and it can be prohibitively difficult or
expensive to obtain enough labeled data to properly fine-
tune the large number of parameters employed by deep,
multilayer networks. As such, we would like the network to
adapt to the new domain in an unsupervised manner, without
any need for labeled target data.

Domain adaptation methods attempt to do just that: mitigate
the harmful effects of domain shift by learning transforma-
tions that map the labeled source and the unlabeled target
domains to a common embedding. This mapping is often
achieved by optimizing the representation to minimize some
measure of domain shift, such as maximum mean discrep-
ancy (Tzeng et al., 2014; Long & Wang, 2015) or correlation
distances (Sun & Saenko, 2016). More recently, adversarial
approaches minimize the discrepancy between domains by
training a generator to fool a discriminator by producing
transformed source images that are indistinguishable from
target images (Ganin et al., 2015; Tzeng et al., 2017).

Although these methods transfer well between similar do-
mains, they produce poor results when the covariate shift is
too large (Wulfmeier et al., 2017). This is precisely the case
of sunny versus rainy weather in the earlier autonomous
vehicle example. There, weather change is a gradual pro-
cess that accumulates small shifts (e.g., darker and darker
sky, incipient rain droplets) to produce large differences in
domains over extended periods of time. We draw inspiration
from this observation and posit that, in many scenarios, do-
mains vary continuously and the shift cannot be effectively

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Adapting to Continuously Shifting Domains

captured in just two domains alone, as illustrated in Figure 1.
Instead, we adapt iteratively from one source to many grad-
ually shifted target domains by exploiting the continuity in
the shift.

One issue that arises from this continuous adaptation proce-
dure is a neural network’s general tendency to forget past
knowledge as it specializes to the current domain. This phe-
nomenon of catastrophic forgetting (Ratcliff, 1990) happens
in sequential training because the weights in the network
that are important for previous domains are altered to adapt
to the current domain. Our method corrects this issue by en-
suring that at every adaptation stage the model continues to
consistently classify previously seen examples. To enforce
this constraint, we add a replay loss that forces previously
recorded logits to match the current model’s classification
scores. Thus, a single model can perform continuous adapta-
tion while maintain strong performance across all domains.

To summarize, in this work we tackle the problem of domain
adaptation starting from one labeled source domain that
continuously shifts into multiple successive unlabeled target
domains. We show that it is important to uniquely adapt
to different domains and present an algorithm that enables
a single model to perform continuous adaptation in stages,
from one domain to the next closest one, while consistently
maintaining performance on all previously seen domains.

Over the next sections, we present our method for allowing
a model to robustly adapt to continuously shifting domains
while preserving high accuracy on previously seen data. In
Section 2, we start from standard unsupervised adaptation
models and explain the staging modifications needed to han-
dle continuous shifts in multiple unlabeled target domains.
Next, we introduce the notion of replay, which refers to
holding on to the model’s scores for a few examples in pre-
vious domains, and constraining the current stage model to
match their scores. In Section 3, we present experiments
that focus on visual classification for continuously rotated
MNIST digits, and on video game play for Atari games
that are gradually color inverted. In addition, we perform a
hyperparameter study for different losses and supplemental
structures that aid in remembering past knowledge.

2. Continuous Unsupervised Adaptation
In continuous adaptation, we are presented with a source
domain S, and multiple target domains Ti that repre-
sent continuous shifts of S at time i. We assume ac-
cess to source images Xs and labels Ys drawn from a
source domain distribution ps(x, y), as well as target im-
ages Xti drawn from target distributions pti(x, y), where
there are no labeled observations. As such, we define
Xs : {(x1, y1), ..., (xN , yN)|(xi, yi)

iid∼ ps(x, y),∀i} and
Xti : {x1, ..., xN |xj

iid∼ pti(x, y),∀j}.

We additionally assume that the source domain is similar
to the target domain at time t0, that the target domain is
smoothly varying, and that pt0 is more similar to ps than pt1
is to ps. In general, the target domain may change back to
the source at some future time, e.g., full rotation. Our goal
is to learn a single target representation Mt and classifier Ct

that can correctly classify images from all target domains
into one of K categories at test time, despite the lack of
domain annotations. Since direct supervised learning on
the target domains is not possible, continuous adaptation
instead learns a source representation mapping, Ms, and a
source classifier, Cs, and then adapts that model for use in
the stream of target domains.

This paradigm poses a number of challenges. First, sim-
ply treating all target domains together as a single batch
of targets ignores the continuity and fails to successfully
learn to adapt to distributions that are farther away from the
source (Wulfmeier et al., 2017). A continuous approach that
adapts to every new target sequentially may also run into the
problem of catastrophic forgetting: although classification
on the current target domain is successful, performance on
past domains is harmed because the network weights that
are important for domains Ti−1, Ti−2, ... are altered to fit
into Ti’s specifications (Wulfmeier et al., 2017). Prior work
addresses this problem by storing a different model for each
stage (Li & Hoiem, 2016; Rusu et al., 2016), but that quickly
becomes unscalable as we progress through the sequence of
domains.

We present a general framework for continuous adaptation
with replay, where we evolve the model to the new distri-
bution while simultaneously guiding it to not deviate too
far from how it previously performed on the prior distri-
butions. Figure 2 illustrates the structure of the proposed
replay model. The cylinders represent the source and target
domains. The model updates after every adaptation stage to
account for another shifted target domain. After every stage
i, we store the scores outputted by the adaptation model
for a subset of the examples in target Ti. For subsequent
stages i+ 1, i+ 2, ..., we add a replay loss to enforce high
performance on the stored past examples. We substantially
subsample every target domain response to allow scalability
of our method over long periods. In this section, we discuss
the processes of model staging, domain subsampling and
matching, and replay loss selection.

2.1. Sequential Unsupervised Adaptation

We introduce an adaptation model that progressively evolves
to correctly classify multiple shifted domains. Standard
unsupervised adaptation effectively adapts between a single
source distribution ps(x, y) and a single target distribution
pt(x, y) by aligning features from both domains. In other
words, they learn the source and target mappings, Ms and

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Adapting to Continuously Shifting Domains

S

Source

S

subsample subsample

0

subsample

1

Adapt

Replay

Adapt

Replay

MT0

0

S

MT1

Target0 Target2

subsample

2

1

0

S

Adapt

Replay

Target1

MT2

Figure 2. Proposed continuous replay model. At each stage, we
save part of the adaptation predictions and use them as “soft” labels
for the current domain. We enforce these past soft labels to be
matched using a replay loss.

Mt, so as to minimize the distance between the empirical
source and target mapping distributions:

Mt ← argmin
Mt

d(Ms(Xs),Mt(Xt)). (1)

Our method is general and any distance function d can
be used. Common choices in recent works include the
Kullback-Leibler divergence (Yang et al., 2012), Maximum
Mean Discrepancy (MMD) (Gretton et al., 2008; Tzeng
et al., 2014; Zhong et al., 2009), correlation alignment (Sun
& Saenko, 2016), and adversarial loss (Liu & Tuzel, 2016;
Tzeng et al., 2015; 2017; Ganin & Lempitsky, 2014).

When the distance between distributions is minimized, the
source classification model, Cs, may be directly applied to
the target representation as a target classifier Ct; we can,
thus, denote both as C, and eliminate the need to learn a
separate target classifier. We can now find Ms and C by
optimizing the supervised objective:

Ms, C ← arg min
Ms,C

Lcls(C(Ms(Xs)), Ys). (2)

A common choice for Lcls is the cross-entropy loss, which
results in the optimization:

min
Ms,C

Lcls(C(Ms(Xs)), Ys) =

− E(xs,ys)∼(Xs,Ys)

K∑
k=1

1[k=ys] logC(Ms(xs))
(3)

In the continuous problem statement, the goal is to minimize
the distance between a single source and multiple targets:

Mt ← argmin
Mt

d(Ms(Xs),Mt(∪Ni=1Xti)). (4)

The above mentioned domain alignment methods would
simply conglomerate all target domains together and per-
form single source to single target adaptation. Unfortunately,
standard unsupervised adaptation on a batch of target do-
mains produces poor solutions for the posed optimization
problem. Our first step towards improvement is adopting, in-
stead, a sequential approach, where at every stage the model
adapts to the next target domain. Starting from the labeled
source domain S, we first guide the model to adapt to the
unlabeled target domain T1. Next, the source domain stays
the same, but the target of interest becomes T2. Since the
domain continuity assumption dictates that T1 is an interme-
diary from S to T2, and the network has already adapted to
T1, the task of adapting from S to T2 becomes much easier.
This is due to the fact that, intuitively, by dividing the larger
domain shift into smaller incremental shifts, the adaptation
method has a smaller distance to minimize from domain
to domain, which allows for more effective optimization
solutions at every stage.

More generally, at each stage, Ti, we initialize the current
target representation, MTi

, using the adapted model from
the previous stage, MTi−1

. We then further adapt between
the current target domain data, XTi , viewed under the cur-
rent target model, and the source domain data, Xs, viewed
under the original source model.

M ←MTi−1
(5)

MTi
← argmin

M
d(Ms(Xs),M(XTi

)) (6)

By continuing this process at every stage, we ensure success-
ful adaptation to the next target domain. However, while
staging alone enables models to more easily adapt, it does
not solve the problem of catastrophic forgetting.

2.2. Continuous Replay Adaptation

We address the issue of forgetting previous domains by
saving the scores for a few previously seen examples and
introducing a replay loss, Lreplay, to enforce the response
to be the same in the current stage model. This process
is illustrated in Figure 2, where every stage’s version of
the adaptation model produces a mini-dataset with a few
selected observations from their specific domain, together
with the predicted classification scores. The subsampling is
randomized at every stage and will be discussed in depth in
Section 3.

Thus, Mt can be updated at every stage via a joint optimiza-
tion of both the sequential unsupervised adaptation update
together with the replay objective:

Mt ← argmin
Mt

[d(Ms(Xs),Mt(Xti))

+ λ · Lreplay(C(Mt(Xp)), Yp)]
(7)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Adapting to Continuously Shifting Domains

Algorithm 1 CUA for continuous adaptation.

1: Ms, C ← argminMs,C Lcls(C(Ms(Xs)), Ys)
2: {Xp, Yp} ← subsample({Xs, Ys}, α)
3: Mt ←Ms

4: for i ∈ {1...N} do
5: Mt ← argminMt

d(Ms(Xs),Mt(Xti))
6: +λ · Lreplay(C(Mt(Xp)), Yp)

7: Ŷti ← C(Mt(Xti))
8: {Xp, Yp} ← {Xp, Yp} ∪ subsample({Xti , Ŷti}, α)
9: end for

where Xp and Yp are the random samples and their pre-
dicted scores saved from previous domains, and λ is a replay
weight that controls how much to optimize for past domain
efficiency. When choosing the replay loss function, Lreplay ,
we experiment with both the above mentioned cross-entropy,
and the standard mean squared error (MSE) loss:

Lreplay(C(Mt(Xp)), Yp) =
1

N

N∑
i=1

(C(Mt(Xp))− Yp)2

(8)

Algorithm 1 illustrates the described Continuous Unsu-
pervised Adaptation (CUA) procedure, which sequentially
adapts to an evolving target distribution while using replay
of past examples to retain prior performance. The method
begins by initializing a supervised source model using the
labeled source data, and subsampling a few examples from
the source data as replay data. A parameter α controls the
subsampling rate by deciding how large of a fraction of the
data to store. For every new target domain, we fit a new
target representation Mt by adapting with distance metric d
and replay loss Lreplay. Finally, we subsample α-rate data
from the current target domain together with the predicted
classification scores obtained under this stage’s model.

3. Experiments
We now evaluate CUA for unsupervised classification adap-
tation to continuously shifting domains. We present two
different adaptation scenarios, MNIST digit rotations and
incremental color inversions for Atari. Surprisingly, both
of these settings cause traditional unsupervised adaptation
methods to fail when attempting to adapt to all variations
together. In addition, we will show that for some of these
shifts, the domain difference from the source to a particular
target is large enough that traditional approaches even fail to
adapt from source to that single target domain. We compare
our model CUA against multiple state-of-the-art unsuper-
vised adaptation methods that perform adaptation to a batch
of target domains. In all of our experimental setups, our
method significantly outperforms the competing approaches

and approaches fully supervised performance.

3.1. MNIST rotations

The first continuous shift we consider is image rotations on
MNIST digits. Our goal is to adapt from regular MNIST
digits with rotation 0◦ to MNIST digits of various rotations.
Figure 3 illustrates an example of the rotations in question.
We designate rotation by 0◦ to be the labeled source domain,
and rotations 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦

to be unlabeled target domains.

Implementation Details. The MNIST dataset contains
60000 training images of handwritten digits, and 10000
test images. The dataset has k = 10 classes, each corre-
sponding to one digit. We randomly split the training set
in half, assigning 30000 images to the source domain (ro-
tation 0◦). The remaining 30000 images are further split
equally between the seven rotations which comprise the
target domain variations. We preserve the marginal distri-
butions over labels in each split. We use LeNet (Cun et al.,
1990) as our base architecture in all experiments. As our
unsupervised domain adaptation method to adapt between
sequential domains we choose the recently proposed ADDA
method (Tzeng et al., 2017).

Comparison Approaches. As our source model we train a
supervised model on 0◦ and evaluate on the target domains
with no adaptation. We also compare against recent unsu-
pervised domain adaptation methods, DANN (Ganin et al.,
2015) and ADDA (Tzeng et al., 2017) that we train on 0◦

MNIST and adapt to all target domains in batch.

Variants of CUA. As an ablation we consider multiple vari-
ants of our CUA model. First, we prove the importance of
our replay objective (Section 2.2) when considering reten-
tion of information learned from prior adaptation shifts (see
Figure 4. We also discuss the trade-off between remember-
ing old domains and adapting to the current domain and
demonstrate how the replay weight, λ, can be used to tune
this trade-off. Finally, we will analyze the scalability of our
method by demonstrating its ability to retain old information
even with a very small sub-sampling rate, α.

3.1.1. EVALUATION AND ABLATION OF REPLAY

In Table 1, we compare the source only classification (no
adaptation); the three unsupervised adaptation methods
ADDA and DANN; CUA with no replay; our full CUA
method; and the result of supervised training on all do-
mains. All competing methods that do not use our frame-
work fail catastrophically to adapt to the variety of target
domains. Note, we used the original source code released
with the UNIT (Liu et al., 2017) method, but were only able
to achieve performance around 10%. Since this is far below
source only performance we omit this result from our tables.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Adapting to Continuously Shifting Domains

Figure 3. Every 45◦ rotation for an MNIST digit.

Method 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦ Average (%)

Source 99.2 61.7 17.2 29.1 39.4 29.8 15.8 51.7 43.0 ± 0.8
ADDA 80.8 70.4 20.8 28.6 42.1 40.2 23.8 41.2 43.5 ± 1.2
DANN 98.6 64.7 19.9 28.4 41.4 32.9 24.2 67.3 47.2 ± 1.6
CUA - no replay (Ours) 51.6 15.1 32.7 38.7 30.4 27.1 73.6 96.0 45.7 ± 1.4
CUA (Ours) 90.4 84.4 82.0 77.3 85.8 88.2 92.7 96.5 90.4 ± 1.6

Target Supervised (Oracle) 96.9 96.7 96.8 97.4 96.6 96.5 96.8 96.4 97.0

Table 1. Rotated MNIST results for various adaptation methods. We evaluate each row on test data at rotations in 45◦ intervals. The last
column contains the average over all test rotations.

The source model, DANN, and ADDA have high accuracy
when tested on the source domain 0◦, but fail to adapt to
domains that are more distinct (i.e. 90◦ and larger rotations).
CUA without replay is able to perform remarkably well on
the current target domain, but fails when evaluated on past
target domains, in other words suffers from catastrophic for-
getting. Finally, our full method, CUA, clearly outperforms
all other methods, with high accuracy both on the current
and on past domains. On average, our method achieves
90.4% accuracy, a larger than 40% raw improvement over
the next competing approach and nearing the performance
of a fully supervised model.

A further comparison between CUA with and without replay
reveals the dramatic impact that past data-matching has on
maintaining high accuracy on past domains. Figure 4 shows
that although both methods have comparable performance
on current domains (blue lines), the replay loss dramatically
helps against catastrophically forgetting previous domains
(orange lines) and its impact is consistent across all domains
(trend holds across rotations on x-axis).

For additional insight on what effect our staged replay frame-
work has on classification, Figure 5 plots confusion matrices
before adaptation, after batch adaptation, for CUA without
replay and with replay, respectively. We present the confu-
sion matrix for a test rotation of 135◦ after fully training all
models. Examining the figure for the source-only baseline
reveals that the domain shift is clearly very large, and, as a
result, the network can only consistently classify the digit
0, which is already rotation-invariant. Batch and no replay
CUA adaptations contribute minor performance improve-

Figure 4. MNIST rotations accuracy reported as a function of the
rotation amount. We compute the timelapse performance at each
rotation evaluated as a past domain or at the time of adaptation to
that domain (current domain). While the current domain accuracy
is comparable for both our CUA and CUA no replay methods, past
domain accuracy is dramatically higher and more consistent as the
domain shifts when replay is included.

ments. With our method, the overall performance is quite
striking, achieving an almost perfect classification score.

3.1.2. TRADE-OFF: ADAPTING TO NEW DOMAINS
VERSUS REMEMBERING PAST DATA

In this subsection we investigate the effect of varying the
replay parameter λ that controls old data classification ac-
curacy versus adaptation to the new domain. Figure 7 illus-
trates the expected behavior that, as λ increases, the current
stage accuracy suffers, while the past stage one increases.
The past stage accuracy plateau demonstrates that after the

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Adapting to Continuously Shifting Domains

(a) Source (b) Adapt Batch (c) CUA (no replay) (d) CUA (Full Model)

Figure 5. Confusion matrices for each model, evaluated on MNIST at the 135◦ orientation. Our method is able to correctly classify the
vast majority of digits. In comparison, standard methods are either unable to effectively handle the domain shift or suffer from catastrophic
forgetting, leading to degraded performance on previously seen domains.

Figure 6. We report here the MNIST rotations accuracy averaged
across all past domains together with the current domain. We study
the the effect of the subsampling rate, α, on overall performance.
α controls what fraction of the past data we store for replay. We
experiment with a α ∈ {0.01, 0.025, 0.1, 0.5, 1} and find that
CUA can handle extremely sparse cases with reasonable accuracy,
demonstrating scalability.

network has paid enough attention to past examples, it can-
not be further tuned to match old data better. We find that
for the cross-entropy loss, values around λ = 0.03 are ideal,
whereas for L2, values around λ = 0.4 are more suitable.

3.1.3. REPLAY LOSS FUNCTION

Our replay loss is agnostic to the particular objective used
to enforce recall of old examples. As such, we evaluate
two potential options here: the L2 norm and cross-entropy
between the prediction recorded during a prior stage and the
current prediction. The cross-entropy calculation focuses on
the one classification label that is most likely for a particular
datapoint, and discards the rest of the signal for categories
with lower classification scores. In theory, the L2 norm pays

(a) Cross Entropy (b) L2

Figure 7. We report here the MNIST rotations accuracy averaged
across all past domains, orange, compared against the current
domain, blue. To study of the effect of tuning the replay weight, λ,
which controls the trade-off between remembering old examples
and learning new examples, we plot performance vs λ with values
from 0 to 1. We also experiment with two different replay losses
for remembering the old data, Cross Entropy and L2. In both cases,
there is a setting of λ that produces strong adaptation performance
while remembering and performing well on old data settings.

attention to the entire distribution of the scores, so intuitively
we would expect it to match past data more accurately than
the single signaled cross-entropy loss. However, in practice,
we found that the method performed similarly regardless of
which of these two losses we choose (see Figure 7).

3.1.4. SCALABILITY ANALYSIS

When adapting to continually shifting domains in the real
world, scalability is a crucial component for allowing the
model to evolve throughout many increasingly changing
domains. We implement a subsampling rate, which is a
parameter α that dictates how much past data to be saved
for future replay. Intuitively, the fewer samples the frame-
work stores, the less correctly the model will remember past
domains.

Figure 6 shows average accuracy across all past domains and
the current domain after the final rotation stage. This figure
illustrates that as we subsample fewer examples, the accu-

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Adapting to Continuously Shifting Domains

Figure 8. Example Pong frames for varying degrees of inversion.
The frames have been resized to 84×84 and converted to grayscale,
and are shown here as they are presented to the network.

racy decreases as expected, but not by a dramatic amount,
suggesting that our method is highly scalable longterm. We
plot five subsampling rates of α = 0.01, 0.025, 0.1, 0.5, 1,
and we see that a dramatic reduction of the saved data by
100 only loses fewer than 10 accuracy points as compared
to storing the full dataset. This is, of course, significant,
but still impressive given the very little past data the model
replays.

3.2. Atari inversions

We further demonstrate the effectiveness of our method
by evaluating it in a reinforcement learning setting—
specifically, the task of learning to play Atari games. In
the source domain, we assume a standard reinforcement
learning setup, wherein at each timestep the agent in state
st selects an action at from the set of legal game actions,
A = {1, ...,K}. Upon taking action at, the environment
transitions to some state st+1 observed by the agent, and
some reward rt is obtained. The agent’s goal is to maximize
its cumulative reward.

We consider the task of adapting policies to a series of target
domains. In each target domain, the agent can take actions
and observe states. However, unlike in the source domain,
no reward is available during training. Thus, standard rein-
forcement learning cannot be applied in this setting. Instead,
we look to adapt the policy learned in the source domain
according to the observations obtained in the target domain.

We emulate the Atari game Pong and choose a domain shift
represented by color inversion. Surprisingly, even an incred-
ibly simple color transformation breaks the performance of
existing state-of-the-art models. We define color inversion
as an operation parametrized by θ ∈ [0, 1], where every in-
verted pixel xinv can be written as a function of the original
xorig:

xinv = (1− θ) ∗ xorig + θ ∗ (1− xorig). (9)

Figure 8 illustrates the gray-scale color change as θ varies
for an Atari Pong frame. For θ = 0.0, there is no inversion,
while θ = 1.0 would result in completely inverted frames.

Inversion factor θ

Method 0.0 0.1 0.2 0.3

Source only 21.0 21.0 17.6 −2.28
MMD (Long & Wang, 2015) 21.0 21.0 17.0 15.9
CUA (Ours) 21.0 21.0 21.0 21.0

Target with reward (Oracle) 21.0 21.0 21.0 21.0

Table 2. Adaptation across visual domains in an Atari setting. We
train a base model for θ = 0.0 using ACKTR (Wu et al., 2017),
then adapt to the θ = 0.1, 0.2, 0.3 environments without any
reward, only observations. We report the reward obtained by the
model averaged over 100 episodes. Despite the absence of rewards
during training, which makes additional reinforcement learning
infeasible, our method is able to recover full performance in the
target domains. This provides further evidence for the robustness
of our method.

For our experiments, the source domain has θ = 0.0, i.e.,
unaltered, and the target domains have θ = 0.1, 0.2, 0.3.
Just as in the MNIST experiments, we compare our staged
adaptation method against a source model and batch adapta-
tion. The source model is an ACKTR baseline agent (Wu
et al., 2017) trained for 50 million timesteps. The model
consists of a network with 3 convolutional layers and 3 fully
connected layers—the exact model definition can be found
in the OpenAI baselines implementation (Dhariwal et al.,
2017). We use this model, together with observations given
by the emulator, as input to each adaptation method.

In this setting, we use another standard unsupervised domain
adaptation approach of maximum mean discrepancy (MMD)
(Tzeng et al., 2014; Long & Wang, 2015) as our distance
function d:

d(Ms(Xs),Mt(Xt)) = ||E[Ms(Xs)]− E[Mt(Xt)]||
(10)

In particular, we look to adapt the source and target models
so that the output of their first fully connected layers are
aligned with each other.

Table 2 shows the rewards obtained by the different meth-
ods on Pong. We report the average reward obtained over
100 episodes for various methods. The results show that
our method is quite effective, recovering full performance
across all target domains. Using a staged approach proves
to be vital, as the model is unable to effectively adapt when
presented with all target domains simultaneously. We also
note that our method is robust, since despite being entirely
unaware of the concept of reward, it is able to preserve the
long-term dependencies necessary for performing well.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Adapting to Continuously Shifting Domains

4. Related Work
Continuously changing domains pose significant challenges
for robot learning and autonomous driving, since small incre-
mental shifts cumulate to a large domain discrepancy over-
time. The large domain shift between the training source
domain and unlabeled target domain seriously affects the ef-
ficacy of machine learning models, as agents do not always
have access to training data that is exactly representative
of the intended testing scenario. In an attempt to solve
this, many past methods have focused on creating feature
transformations able to map domains to a space invariant to
domain change (Lowry et al., 2016). Some other approaches
predict the changes by synthesizing intermediate images be-
tween domains (Neubert et al., 2013) or retraining multiple
experiences of the same visual scene (Churchill & Newman,
2013). However, neither method scales with an increase in
target domains in the continuous shift settings.

Another approach, domain transfer learning, has studied
both shallow (Gretton et al., 2009; Csurka, 2017) and deep
methods (Tzeng et al., 2017; Sun & Saenko, 2016; Tzeng
et al., 2014; Taigman et al., 2016; Liu et al., 2017). Recently,
the domain adaptation community has been focusing on
transferring deep neural network representations from a
labeled source dataset to a target domain where labeled data
is sparse or non-existent. The main strategy has been to learn
representations by minimizing the difference between the
source and target feature distributions (Gretton et al., 2009;
Sun & Saenko, 2016; Tzeng et al., 2014). In Tzeng et. al.’s
Adversarial Discriminative Domain Adaptation (ADDA)
(Tzeng et al., 2017), the method guides feature learning by
training a generator to fool the discriminator by producing
images indistinguishable from target images, effectively
minimizing discernibility between the source and target
feature distributions. All these works treat the unsupervised
domain adaptation problem as a batch transition without
exploiting the continuity of the shifting domains, which
significantly impacts their performance in the continuous
problem setting.

Several other methods have attempted to tackle domain shift
through domain generalization, which aggregates all infor-
mation from multiple training domains or datasets to learn
a shared invariant representation. Here, the focus is not
on adapting the classifier to the target domain, because it
is unknown. Instead, methods like (Motiian et al., 2017)
learn at training time an embedding that maps to a domain
invariant space. A related approach that uses domain ran-
domization hypothesizes that with enough variability in
training, the testing domain may appear to the model as
just another variation (Tobin et al., 2017). The method at-
tempts to make the model generalizable from simulations to
real-world robots by introducing variability at training time
in the form of randomized transformations to the original

simulator. Unfortunately, both methods require a varied
collection of labeled target domains and the knowledge that
test domains will be relatively similar, which in our setting
is unavailable. Furthermore, since the methods do not utilize
the target domain information at all, it is unclear how well
these models would adapt to domains of larger discrepancy
than the ones in training.

A notable line of work is that of continuous manifold learn-
ing (Hoffman et al., 2014), where they adapt to evolving
visual domains by learning a sequence of transformations
on a fixed source representation. Another recent paper that
is closest to our method discusses a similar incremental
domain adaptation approach for continually changing envi-
ronments (Wulfmeier et al., 2017). However, in both papers
the authors are exclusively concerned with efficient adap-
tation for online streams of continuously shifted data, and
do not focus at all on performance for past examples or the
issue of catastrophic forgetting.

Other methods that tackle forgetting specifically, such as
progressive networks (Rusu et al., 2016), which explicitly
supports transfer across sequences of tasks in its architecture,
or elastic weight consolidation (Kirkpatrick et al., 2016),
which selectively slows down learning on the weights impor-
tant for old tasks, focus exclusively on supervised transfer,
which is unsuitable for continuous adaptation. Moreover,
progressive networks increase in size as more data comes in,
which quickly becomes not scalable in a prolonged contin-
uous setting. “Learning without Forgetting” (Li & Hoiem,
2016) suffers from the same problem, because it involves
saving all previous models and reclassifying data through
them at every stage.

5. Conclusion
We have proposed a flexible framework for continuous un-
supervised domain adaptation that enables single adaptation
models to adapt to continual domain shifts while consis-
tently maintaining performance on all domains. We show
that even on small domain adaptation problems, such as
continuously rotating MNIST digits and smoothly varying
contrast in an Atari game, traditional adaptation methods
fail catastrophically to cope with the evolving and diverse
target domain. In, contrast our method is successfully able
to recover near supervised learning performance on both
the current domain as well as effectively and efficiently
retain the information necessary to perform well on prior
instantiations of the target domain.

References
Churchill, Winston and Newman, Paul. Experience-based

navigation for long-term localisation. The International
Journal of Robotics Research, 32(14):1645–1661, 2013.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Adapting to Continuously Shifting Domains

doi: 10.1177/0278364913499193. URL https://
doi.org/10.1177/0278364913499193.

Csurka, Gabriela. Domain adaptation for visual applications:
A comprehensive survey. CoRR, abs/1702.05374, 2017.
URL http://arxiv.org/abs/1702.05374.

Cun, Y. Le, Matan, O., Boser, B., Denker, J. S., Henderson,
D., Howard, R. E., Hubbard, W., Jacket, L. D., and Baird,
H. S. Handwritten zip code recognition with multilayer
networks. ii:35–40 vol.2, Jun 1990. doi: 10.1109/ICPR.
1990.119325.

Dhariwal, Prafulla, Hesse, Christopher, Klimov, Oleg,
Nichol, Alex, Plappert, Matthias, Radford, Alec, Schul-
man, John, Sidor, Szymon, and Wu, Yuhuai. Ope-
nai baselines. https://github.com/openai/
baselines, 2017.

Ganin, Y. and Lempitsky, V. Unsupervised Domain Adap-
tation by Backpropagation. ArXiv e-prints, September
2014.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-Adversarial Training of Neural Networks. ArXiv
e-prints, May 2015.

Gretton, A., Smola, AJ., Huang, J., Schmittfull, M., Borg-
wardt, KM., and Schölkopf, B. Covariate shift and local
learning by distribution matching, pp. 131–160. MIT
Press, Cambridge, MA, USA, 2009.

Gretton, Arthur, Borgwardt, Karsten M., Rasch, Malte J.,
Schölkopf, Bernhard, and Smola, Alexander J. A
kernel method for the two-sample problem. CoRR,
abs/0805.2368, 2008. URL http://arxiv.org/
abs/0805.2368.

Hoffman, Judy, Darrell, Trevor, and Saenko, Kate. Con-
tinuous manifold based adaptation for evolving visual
domains. pp. 867–874, 06 2014.

Kirkpatrick, James, Pascanu, Razvan, Rabinowitz, Neil C.,
Veness, Joel, Desjardins, Guillaume, Rusu, Andrei A.,
Milan, Kieran, Quan, John, Ramalho, Tiago, Grabska-
Barwinska, Agnieszka, Hassabis, Demis, Clopath, Clau-
dia, Kumaran, Dharshan, and Hadsell, Raia. Overcom-
ing catastrophic forgetting in neural networks. CoRR,
abs/1612.00796, 2016. URL http://arxiv.org/
abs/1612.00796.

Li, Zhizhong and Hoiem, Derek. Learning without for-
getting. CoRR, abs/1606.09282, 2016. URL http:
//arxiv.org/abs/1606.09282.

Liu, Ming-Yu and Tuzel, Oncel. Coupled generative ad-
versarial networks. CoRR, abs/1606.07536, 2016. URL
http://arxiv.org/abs/1606.07536.

Liu, Ming-Yu, Breuel, Thomas, and Kautz, Jan. Unsu-
pervised image-to-image translation networks. CoRR,
abs/1703.00848, 2017. URL http://arxiv.org/
abs/1703.00848.

Long, Mingsheng and Wang, Jianmin. Learning transfer-
able features with deep adaptation networks. CoRR,
abs/1502.02791, 2015. URL http://arxiv.org/
abs/1502.02791.

Lowry, Stephanie, Sünderhauf, Niko, Newman, Paul,
Leonard, John J., Cox, David, Corke, Peter, and Mil-
ford, Michael J. Visual place recognition: A sur-
vey. IEEE Transactions on Robotics, 32(1):1–19, 2016.
doi: 10.1109/TRO.2015.2496823. URL https://
eprints.qut.edu.au/105651/.

Motiian, Saeid, Piccirilli, Marco, Adjeroh, Donald A.,
and Doretto, Gianfranco. Unified deep super-
vised domain adaptation and generalization. CoRR,
abs/1709.10190, 2017. URL http://arxiv.org/
abs/1709.10190.

Neubert, P., Snderhauf, N., and Protzel, P. Appearance
change prediction for long-term navigation across sea-
sons. In 2013 European Conference on Mobile Robots, pp.
198–203, Sept 2013. doi: 10.1109/ECMR.2013.6698842.

Ratcliff, Roger. Connectionist models of recognition mem-
ory: constraints imposed by learning and forgetting func-
tions. Psychological review, 97 2:285–308, 1990.

Rusu, Andrei A., Rabinowitz, Neil C., Desjardins, Guil-
laume, Soyer, Hubert, Kirkpatrick, James, Kavukcuoglu,
Koray, Pascanu, Razvan, and Hadsell, Raia. Progressive
neural networks. CoRR, abs/1606.04671, 2016. URL
http://arxiv.org/abs/1606.04671.

Sun, Baochen and Saenko, Kate. Deep CORAL: corre-
lation alignment for deep domain adaptation. CoRR,
abs/1607.01719, 2016. URL http://arxiv.org/
abs/1607.01719.

Taigman, Yaniv, Polyak, Adam, and Wolf, Lior. Un-
supervised cross-domain image generation. CoRR,
abs/1611.02200, 2016. URL http://arxiv.org/
abs/1611.02200.

Tobin, Joshua, Fong, Rachel, Ray, Alex, Schneider, Jonas,
Zaremba, Wojciech, and Abbeel, Pieter. Domain random-
ization for transferring deep neural networks from sim-
ulation to the real world. CoRR, abs/1703.06907, 2017.
URL http://arxiv.org/abs/1703.06907.

Tzeng, Eric, Hoffman, Judy, Zhang, Ning, Saenko, Kate,
and Darrell, Trevor. Deep domain confusion: Maximizing
for domain invariance. CoRR, abs/1412.3474, 2014. URL
http://arxiv.org/abs/1412.3474.

https://doi.org/10.1177/0278364913499193
https://doi.org/10.1177/0278364913499193
http://arxiv.org/abs/1702.05374
https://github.com/openai/baselines
https://github.com/openai/baselines
http://arxiv.org/abs/0805.2368
http://arxiv.org/abs/0805.2368
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1606.09282
http://arxiv.org/abs/1606.09282
http://arxiv.org/abs/1606.07536
http://arxiv.org/abs/1703.00848
http://arxiv.org/abs/1703.00848
http://arxiv.org/abs/1502.02791
http://arxiv.org/abs/1502.02791
https://eprints.qut.edu.au/105651/
https://eprints.qut.edu.au/105651/
http://arxiv.org/abs/1709.10190
http://arxiv.org/abs/1709.10190
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1607.01719
http://arxiv.org/abs/1607.01719
http://arxiv.org/abs/1611.02200
http://arxiv.org/abs/1611.02200
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1412.3474

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Adapting to Continuously Shifting Domains

Tzeng, Eric, Hoffman, Judy, Darrell, Trevor, and Saenko,
Kate. Simultaneous deep transfer across domains and
tasks. CoRR, abs/1510.02192, 2015. URL http://
arxiv.org/abs/1510.02192.

Tzeng, Eric, Hoffman, Judy, Saenko, Kate, and Darrell,
Trevor. Adversarial discriminative domain adaptation.
CoRR, abs/1702.05464, 2017. URL http://arxiv.
org/abs/1702.05464.

Wu, Yuhuai, Mansimov, Elman, Grosse, Roger B, Liao,
Shun, and Ba, Jimmy. Scalable trust-region method for
deep reinforcement learning using kronecker-factored
approximation. In Advances in Neural Information Pro-
cessing Systems 30. 2017.

Wulfmeier, M., Bewley, A., and Posner, I. Incremental Ad-
versarial Domain Adaptation. ArXiv e-prints, December
2017.

Wulfmeier, Markus, Bewley, Alex, and Posner, In-
gmar. Addressing appearance change in outdoor
robotics with adversarial domain adaptation. CoRR,
abs/1703.01461, 2017. URL http://arxiv.org/
abs/1703.01461.

Yang, Pei, Gao, Wei, Tan, Qi, and Wong, Kam-Fai.
Information-theoretic multi-view domain adaptation, 07
2012.

Zhong, Erheng, Fan, Wei, Peng, Jing, Zhang, Kun, Ren,
Jiangtao, Turaga, Deepak, and Verscheure, Olivier. Cross
domain distribution adaptation via kernel mapping. In
Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’09, pp. 1027–1036, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-495-9. doi: 10.1145/1557019.
1557130. URL http://doi.acm.org/10.1145/
1557019.1557130.

http://arxiv.org/abs/1510.02192
http://arxiv.org/abs/1510.02192
http://arxiv.org/abs/1702.05464
http://arxiv.org/abs/1702.05464
http://arxiv.org/abs/1703.01461
http://arxiv.org/abs/1703.01461
http://doi.acm.org/10.1145/1557019.1557130
http://doi.acm.org/10.1145/1557019.1557130

