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Research context and objectives

Res T Usr

@ The Global Navigation Satellite System (GNSS) is an important tool to observe
and model geodynamic processes such as post-glacial rebound, hydrological
loading or crustal deformations. GNSS signals also have important practical
geopositioning applications such as for example when used with differential
methods to improve GNSS position accuracy.

@ Due to the considerable computational resources required, GNSS time series analysis
is commonly performed with daily observations. Yet, in many cases, it is preferable
to analyze data hourly or even on a minute-by-minute basis.

Research Objective: Analysis of large network of GNSS stations is extremely
computationally intensive and our objective is to develop an alternative estimator that
is considerably more computationally efficient with a reasonable loss in efficiency.
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Example of a GNSS network and of a GNSS time series signal

DNRC station GNSS signal
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@ In many applications, the primary objective is to obtain a

, with a particular emphasis on the , and to
accurately assess the associated
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The model

o A general formulation of the models typically used to model GNSS signals can be
expressed as:

y=XBo+e

where y € IR™ denotes the response variable of interest (i.e. the vector of GNSS
observations), X € R™*? is a fixed design matrix, 3y € IR is a vector of unknown
constants and € € IR" is a vector (mean zero) of residuals.

@ We assume that g, is a strictly stationary process with € ~ N {0, 3 (7o)}, where
3(40) > 0 and that it depends on the unknown parameter vector v, € IR?. This
matrix does not have a block diagonal structure neither a Toeplitz structure.

@ The noise structure is generally modelled with latent composite stochastic models
which often consider long-memory stochastic processes.

@ Hence, we define -
90:2[@? N5 ] €@ ¢ R

as the vector of parameters of the model.
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Maximum Likelihood Estimator (MLE)

@ The likelihood function for a generic 8 € © is simply given by

1 - . —1/2
1O =ew {3 w-XB) B () - X8) | [earden (2|
allowing to define the Maximum Likelihood Estimator (MLE) for 6, as
. ~ T
0= [ BT AT ] =argmax L(O|Y) (1)
6co®

@ Using standard regularity conditions, the MLE is asymptotically normal and
asymptotically efficient.

@ Solving (1) require to evaluate the likelihood function a large number of time where
each evaluation involves the inversion of the n X n matrix X(+o). This operation
has a computational complexity of order O(n”) where ¢ € [2. 3] depending on the
considered algorithm.

@ In practice, the analysis of complex geodynamic processes requires to estimate
signals from hundreds to thousands of GNSS stations (He et al., 2021) which record
daily observations over decades and where different noise models must be tested.

@ This procedure which has to be performed routinely becomes impractical due to
the large amount (e.g., weeks) of processing time required (He et al., 2019; Bos
et al., 2020).
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The GMWMX

@ We propose to use of a new two-step statistical procedure, which considers a
Generalized Least Squares (GLS) approach combined with the Generalized
Method of Wavelet Moments (GMWM) proposed in Guerrier et al., 2013.

@ The proposed estimator is an iterative method and the number of iteration j can be
used to balance the statistical properties and computational cost.

@ We denotes this estimator as the GMWIMX in reference to the
Autoregressive—moving-average model with eXogenous inputs model
(ARMAX).

o We first define the GMWMX estimator ﬁ of the parameters By which corresponds
to the Generalized Least Square estimator.

B(2) = argmin{y — XB8)"S "y - XB) = (XTE’lX) T xTyly
B

o We define e(3) = y — X3 and its natural estimator based on 8,

gi=e(B) =y —X;B
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The GMWMX

@ We then consider a in order to construct a
using the Wavelet Variance (WV) of the residuals (3).

@ The GMWM (Guerrier et al., 2013) is a computationally efficient moment-based
estimator which exploits the mapping between the theoretical Wavelet Variance
(WV) implied by a model and the empirical WV estimated on a signal.

o We define (), the WV implied by the estimated model and v (3) which
corresponds to the estimated Haar WV computed on € (3), in order to estimate the
vector of parameters of interest ~o.

o We define
7(8) = argmin{2(8) — v(v)} D (B) - v(7)},
vy
where Q is an appropriate (possibly estimated) positive-definite weighting matrix.

@ The of this procedure corresponds to the computation of
the empirical WV which has
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GMWMX: Iterative algorithm (Flowchart)
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GMWNMX: Iterative algorithm

o We define the estimator resulting from j iterations and hence using an updated
estimator of 3 (o) as 8.

e Starting at j = 1 with (% = I, we define

1

39 = [XT (2(1*1))_lxj|71XT (209) ",

fT/(j) = argmin {19 (E(j)) - V(’Y)}T 2 {'} (B’(j)) N V(,Y)} ’ @

7
»@) _ = (’7(”) — var (y | ,ym)
o . 9T
o The resulting estimator is hence denoted by: 81 = | )T FWT ]

@ We denote the estimator defined in Eq. (2) with one or two iterations as the
GMWMX-1 and the GMWMX-2, respectively.
@ Under arguably weak conditions (Guerrier et al., 2013; Guerrier et al., 2022), the

resulting estimator is and
@ Moreover, it can be shown that Bm is asymptotically optlmal for all j > 2 in the
sense that

lim var{@(ﬁ—ﬁo)} —Var{\/a(,é(j) —,80)} =0

n—oo

where {an },, e}y is a diverging sequence of positive numbers such that \/@ 7, corresponds to the asymptotic rate of convergence of 3.
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Simulation Studies: Description & Settings

@ We evaluate the performance of the GMWMX-1 and GMWMX-2 estimators with
respect to the MLE implemented in the open source software Hector v1.9 (Bos
et al., 2008) which represents the fastest available implementation of the MLE for
these type of models.

@ We generate signal of different lengths of GNSS daily position time series, i.e., 2.5,
5, 10, 20 and 40 years and consider 10 % of missing observations for each simulated
signal which corresponds approximately to the estimated median number of missing
data of publicly available datasets (Bos et al., 2013).

o We fix the parameters of the model by considering values which are representative of
the estimated parameters on real GNSS time series signal.

@ All our simulations are based on B = 10® Monte-Carlo replications.
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Model considered

o A common formulation of of the model is given by He et al., 2017, which can we
expressed as follows for the i-th component of the vector X 3:

2

X;Tﬁ() =a+b (tz - t()) + Z [Cj sin (27Tf]tz) + dj COs (27Tfjt1)] + ngH (tl — tk) R

=1 k=1

where:

e a is the initial position at the reference epoch tg

o b is the trend parameter

e ¢; and d; are the periodic motion parameters (where f; is the frequency of the
sinusoidal and j = 1 and j = 2 represent the annual and semi-annual seasonal terms,
respectively).

o The offsets term models earthquakes, equipment changes or human intervention, in
which gy, is the magnitude of the change at epochs t;, ng is the total number of

1, >0
0, =<0
@ Regarding the stochastic model considered for &, we consider
, where the autocovariance function of the Matérn
process with parameter o, X and o2 is given by:

offsets, and H(z) is the Heaviside step function H(z) := {

202
I(a —1/2)22-1/2
where K, (z) is the modified Bessel function of the second kind of order w.

a(h) = [AR|® Y21 2 (AlR))

Lionel Voirol JSM 2023 - The GMWMX 11/22



Simulation Studies: Computational gain
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Figure: Mean running time of the MLE, the GMWMX-1 and the GMWMX-2 as a function of the
sample size.
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Simulation Studies: Point estimation
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Figure: Boxplots of the estimated parameters of the model with the GMWMX-1, the GMWMX-2
and the MLE
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Simulation Studies: Point estimation
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Figure: Boxplots of the estimated parameters of the model with the GMWMX-1, the GMWMX-2
and the MLE
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Simulation Studies: Inference

Empirical coverage %

Figure: Empirical coverage of the confidence intervals at level 1 — o = 0.95 for the parameters b,
c1 and d; for GMWMX-1, GMWMX-2 and the MLE as a function of sample size. The grey area
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represents a 95% confidence interval of the simulation error.
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@ We apply our method to daily GNSS coordinate time series. We use measurements
from a small network of 33 continuously operating GNSS receivers distributed
over the east coast of the USA.

@ We use the daily position time series to estimate the tectonic rate and the
associated uncertainties with the GMWMX-1 and the MLE.

@ As each GNSS station records observations for the three coordinates (East, North,
Up) and that the mean size of each time series is approximately 10 years, ranging
from 8 to 15 years, the computing time for the GMWMX-1 for the whole GNSS
network is below 40 seconds, while in comparison, Hector's processing time is
approximately 23 minutes.
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Case Study
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Figure: Estimated North-East velocity solutions for 33 GNSS receivers distributed over the East
coast of the USA using the GMWMX-1 and Hector software (MLE).

Lionel Voirol JSM 2023 - The GMWMX




Implementation

The gmwmx R package implements the Generalized Method of Wavelet Moments with
eXogenous inputs estimator (GMWMX) and is available on CRAN and GitHub.

gmwmx Overview

< SMAC
Group

The gmwmx R package implement the Generalized Method of Wavelet Moments with Exogenous
Inputs estimator (GMWMNX) introduced in Cucci, D. A., Voirol, L., Ke tillet, J. P, and Guerrier, S. (2022) and provides
functions to estimate times series models that can be expressed as linear models with correlated residuals. Moreover, the gmwmx

marrec, G.

package provides tools to compare and analyze estimated models and methods to easily compare results with the Maximum
Likelihood Estimator (MLE) implemented in Hector, allowing to replicate the examples and simulations considered in Cucci, D. A
Voirol, L, Kermarre 22). In particular, this package implements a statistical inference

framework for the functional and stochastic parameters of models such as those used to model Global Navigation Satellite System

5., Montillet, J. P, and Guerrier, S

(GNSS) observations, enabling the comparison of the proposed method to the standard MLE estimates implemented in Hector

Find the package vignettes and user’s manual at the package website

Below are instructions on how to install and make use of the gmm:x package.

Installation Instructions

The gmwmx package is available on both CRAN and GitHub. The CRAN version is considered stable while the GitHub version is
problems or broken functions. You can install the stable version of

subject to m
the g

which may lead to

wmspackage with:

For users who are interested in having the latest developments, the GitHub version is ideal although more dependencies are
required to run a stable version of the package. Most importantly, users must have a ( c++ ) compiler installed on their machine

thatis compatible with R (e.g. c1

JSM 2023 - The GMWMX
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https://CRAN.R-project.org/package=gmwmx
https://github.com/SMAC-Group/gmwmx

Contributions & Further work

@ We propose a and estimator based on simple
statistical concepts which allow to process large-scale networks which include
thousands of GNSS stations. Our estimator is implemented in an open-source
software available on CRAN.

@ The first estimator (GMWMX-1) is highly computationally efficient but comes at the
price of marginally deteriorated statistical properties. The second estimator
(GMWMX-2) is asymptotically efficient for the linear functional parameters but has
a slightly increased processing time.

@ We are currently working on developing the theory to extend the GMWMX in a

@ The GMWMX estimator is well-suited for managing very large datasets, such as
those encountered in air pollution studies (Chen and Zhou, 2020). In such cases, a
prevalent tactic involves employing a for estimation,
as processing the complete dataset on a single server is unfeasible.
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Q&A

Thank You!

More info:

Original article published in the Journal of Geodesy
@ https://lionelvoirol.com
DI Lionel.Voirol@unige.ch
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